
www.manaraa.com

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-1, Issue-7, September 2013

12

Database Management Systems: A NoSQL Analysis

Innocent Mapanga, Prudence Kadebu

 Abstract- Addressing today’s ever increasing changes in data
management needs require solutions that can achieve unlimited

scalability, high availability and massive parallelism while

ensuring high performance levels. The new breed of applications

like business intelligence, enterprise analytics, Customer

Relationship Management, document processing, Social

Networks, Web 2.0 and Cloud Computing require horizontal

scaling of thousands of nodes as demanded when handling huge

collections of structured and unstructured data sets that

traditional RDBMS fail to manage. The rate with which data is

being generated through interactive applications by large

numbers of concurrent users in distributed processing involving

very large number of servers and handling Big Data

applications has outpaced the capabilities of relational databases

thereby driving focus towards the NoSQL database Adoption.

NoSQL database systems have addressed scaling and

performance challenges inherent in traditional RDBMS by

exploiting partitions, relaxing heavy strict consistency protocols

and by way of distributed systems that can span data centres

while handling failure scenarios without a hitch. In this paper

different database management systems are discussed and their

underlying design principles namely ACID, CAP and BASE

theorems respectively, are evaluated.

Keywords: Database Management Systems, Relational

Databases, NoSQL Databases, ACID, CAP, BASE

I. INTRODUCTION

The advent of computer systems and the rapid changes in

industrial dynamics on several fronts including research and

technical knowledge increased the demand on quality and

productivity of products and services. This saw the

automation of real world processes and the introduction of

Assembly Automation Equipment, Automated Bookkeeping

and Manufacturing systems among a many others. These

systems were capable of manipulating only textual and

numerical data using Flat file databases as a data management

system. This enabled measurement, collection, transcription,

validation, organisation, storage, aggregation, update,

retrieval and protection of data.

A Flat file database describes any of the various means to

encode a database model (most commonly a table) as a single

file. Flat file databases contained a logical collection of

records with no structured relations which were in plain text

or binary file.

Manuscript Received September 15, 2013.

 Innocent Mapanga, Department of Computer Engineering Delhi

Technological University, Delhi, India.

 Prudence Kadebu, Department of Computer Engineering, Delhi

Technological University , Delhi, India.

Flat file databases at the time were quite useful as data

management requirements were still very limited and simple.

With further advances in technology, flat file databases

became inadequate as they could not cater for new data types,

data security and growth requirements. Also flat file

databases contained no information about data and additional

knowledge was required to interpret the files. There was no

standard way of storing data as well as a standard of

communicating to and from the database, hence it created a

lot of inefficiencies.

 In the 1970s cord came up with the relational theory that led

to the development of the relational Database Management

Systems (RDBMS) as a solution to the challenges posed by

the flat file database system in the earlier years. Storage of

data in RDBMS was done using Tables. Standard fields and

records are represented as columns (fields) and rows (records)

in a table. Their major advantage was the ability to relate and

index information. Security was enhanced in RDBMS and

they were also able to adapt to considerable growth of data.

Structured Query Language, SQL is the programming

language used for querying and updating relational databases.

For a long time RDBMS has been the preferred technique for

data management purposes. However, RDBMS inability to

handle modern workloads has given rise to scalability,

performance and availability problems with its rigid schema

design. Businesses all over the world, including Amazon,

Facebook, Twitter, and Google have adopted new ways to

store and scale large amounts of data hence the move away

from the complexity of SQL based servers to NoSQL

database Systems. NoSQL is a class of database management

systems that have been designed to cater for situations in

which RDBMSs fall short. It is different from the traditional

relational databases mainly in that it is schema-less. This

makes it suitable to be used for unstructured data. These

engines usually provide a query language that provides a

subset of what SQL can do, plus some additional features [1].

This paper is organised as follows: section II will look at

NoSQL databases overview. Section III focuses on the

NoSQL databases categories, Section IV the NoSQL Query

Languages followed by Models for structuring NoSQL

databases in section V and lastly the conclusion and future

works.

II. NOSQL DATABASES

The NoSQL database approach is characterized by flexibility

in storage and manipulation of data, improvements in

performance and allowing for easier scalability. Many

www.manaraa.com

Database Management Systems: A NoSQL Analysis

13

different types of these NoSQL databases exist, each one

suited for different purposes. Examples include MongoDB

whose deployments are at foursquare, Disney, bit.ly,

sourceforge, CERN, The New York Times, and others.

Hadoop (Apache), Cassandra was primarily used by

Facebook for their Inbox Search. Afterwards it was

open-sourced and now it is an Apache Software Foundation

top-level project, being used by Digg, Twitter, Reddit,

Rackspace, Cloudkick, Cisco and others. DynamoDB is used

by Amazon, Voldemort is used by Amazon, and Neo4J is

used by Adobe and Cisco etc. While RDBMS is transaction

oriented and based on the ACID principle, NoSQL make use

of either CAP or BASE.

Among several capabilities of NoSQL databases are

managing large streams of non-relational and unstructured

data, fast data access speeds, availability of data even when

system is operating in degraded mode due to network

partitions. NoSQL databases provide near-endless scalability

and great performance for data-intensive use cases. However,

with so many different options around, choosing the right

NoSQL database for your interactive Web application can be

tricky. In general, the most important factors to keep in mind

are as follows:

i. Scalability. Adopting the Sharding technique can be

useful in achieving scale regardless of the database

technology in use. Sharding employs horizontal

partitioning which is a database design principle in

which rows of a database table are held

separately .These tables may then be located on a

separate database server or physical locations.

Scaling quickly, on demand, and without any

application changes has become a determinant factor

in Web traffic that has on and off surges. Resource

contention between servers like disk, memory and

CPU is removed. Intelligent parallel processing and

maximization of CPU/Memory per database

instance can be done.

ii. Performance. Interactive applications require very low

read and write latencies. Performance is achieved by

distributing load across several servers. The

database must deliver consistently low latencies

regardless of load or the size of data. As a rule, the

read and write latencies of NoSQL databases are

very low because data is shared across all nodes in a

cluster while the application’s working set is in
memory.

iii. Availability. Interactive Web applications need a highly

available database. If your application is down, you

are simply losing money. To ensure high availability,

your solution should be able to do online upgrades,

easily remove a node for maintenance without

affecting the availability of the cluster, handle online

operations, such as backups, and provide disaster

recovery, if the entire data centre goes down.

iv. Ease of development. Relational databases require a

rigid schema and, if your application changes, your

database schema needs to change as well. In this

regard, NoSQL databases offer a number of

important advantages that make it possible to alter

data structure without affecting your application.

Supporting distributed processing of large-scale data

workloads requires adequate processing frameworks likes

Apache Hadoop with the MapReduce engine. The emergence

of new forms of traffic profiles driven by the Social Web as

well as the growing popularity of E-commerce coupled by the

ever increasing interconnectedness of the World where Sites

are experiencing variations of traffic through-out the year has

resulted in massive surges of writes and read traffic in Sites

like Twitter, Facebook, Whatsapp in very short time frames

hence the need for infrastructure that adapt quickly. Massive

upswings on volumes of data movement across the Internet

into storage solutions might have traffic becoming a

bottleneck. The popularity of agile development methods call

for techniques that offer higher scalability and performance so

as to keep up with the ever changing technical environment.

In-memory database for high update situations, like a website

that displays everyone's "last active" time (for chat maybe). If

users are performing some activity once every 40 seconds,

then it will push RDBMS to limits with about 5000

simultaneous users for instance, what when the numbers

multiplies by 10.

III. NOSQL DATABASE CATEGORIES

A. KEY VALUE STORES

Provide a way of storing schema-less data by means of a

distributed index for object storage. The key (data-type) will

be displayed on the left and the corresponding value (actual

data) on the right as shown in the example below.

 Key Value

Comp3_manufa Dell

Comp20_processor IntelCore_i5

Comp3_installedMemory 4GB

comp230_systemType 64-BitOS

Figure 1: Key Value Store

Key/Value store is best applicable where write performance is

of highest priority since its schema-less structure allows for

fast storage of data.

B. COLUMN ORIENTED DATABASES

Provide a data store that resembles relational tables but also

adds a dynamic number of attributes to the model. They use

keys but they point to multiple tables.

http://news.ycombinator.com/item?id=16430

www.manaraa.com

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-1, Issue-7, September 2013

14

Row Key Columns.....

Com

p3

Brand processor Memory Sys

Type

Dell IntelCore_i5 4GB 64BitOS

Com

p8

Brand processor Memory Sys

Type

Dell IntelCore2_d

uo

3GB 32BitOS

Printer4

2

Brand Color Type

Hp White 4in1

Figure 2: Column Oriented databases

C. DOCUMENT ORIENTED DATABASES

Data is treated as independent objects and their attributes

which are stored as separate documents. Each document

contains unique information pertaining to a single object.

Document stores recognise the structure of the objects stored.

Read and writes can be accomplished at once thus making it

faster in performance. Schema-less structure gives flexibility

in the wake of changing technologies. Documents are

described using JSON or XML or derivatives.

Figure 3: Document Oriented Databases

D. GRAPH DATABASES

These are databases that are based on the graph theory. Graph

 databases store data in a graph structure with nodes, edges

and properties to represent the data. The nodes represent

entities in the database. Edges are connecting lines

between two nodes representing their relationships.

Properties are the attributes of the entities. Graph databases

are more applicable in social networks and intelligent

agencies as they efficiently show relationships between

entities and provide a way to access data in sites with heavy

workloads (predominantly reads).

Figure 4: Graph Databases

E. OTHER CATEGORIES

The databases discussed above are considered to be the major

ones. However, NoSQL has several other categories of

databases for various applications. Other types include

Multimodel Databases (eg ArangoDB, OrientDB), Object

Databases (DB40, Velocity), Grid and C loud Database

solutions (Gigaspace, Gemfire), XML Database (BaseX,

Berkeley DB XML), Multidementional Databases (SciDB,

MiniM DB).

IV. QUERY LANGUAGES

There are a couple of tools that are available for querying

numerous NoSQL databases

i. UnQL(Unstructured Query Language)

UnQL is an open query language for document databases

developed by SQLite and CouchDB teams. It is meant to be a

superset of SQL and so in theory it can also be used to access

a legacy SQL database engine [9]. However it cannot change

its schema. This QL was intended to solve the vendor lock-in

problem by providing a cross platform database functionality

for document databases like CouchDB, MongoDB and Riak

i. SPARQL (SPARQL Protocol and RDF Query

Language)

 It is a declarative query specification for graph databases

designed by W3C RDF Data Access Working Group. It is

www.manaraa.com

Database Management Systems: A NoSQL Analysis

15

Key Value

Stores

Column Family

Databases

Document

Databases

Graph databases

Based on Dynamic Hash

Tables,

Dynamo DB

Google’s Bigtable Lotus Notes,

encoding include

JSON, XML

Euler’s Graph
Theory

Data Model Key/Value

pairs

Columns Key/Value

Collections

Graph structure-

Nodes, Edges and

Properties

Applicability Handling

massive load

Distributed file

systems

Web applications,

full text searches

and updates,

information

ranking

Semantic web,

Social Networks,

Intelligent Agencies

Advantages Simple and

easy to

implement

Fast querying of data,

storage of very large

quantities of data

Accepts partially

complete data,

allows efficient

querying

Easy scaling of

complex data across

distributed systems.

Disadvantages Inefficient in

querying/

updating part

of a database

Very low-level API No standard query

language

Traversal of entire

graph to give correct

results

Examples Redis,Project

Voldermort

Cassandra, HBase MongoDB,

CouchDB

Neo4J, InfoGrid

Data Model Key/Value

pairs

Columns Key/Value

Collections

Graph structure-

Nodes, Edges and

Properties

Figure 5: Summary of the four categories

able to retrieve and manipulate data stored in Resource

Description Framework format [10]. RDF is a directed,

labelled graph data format used to represent data in the web

[11]. SPARQL specifies four different query variations for

different purposes. These include SELECT query,

CONSTRUCT query, ASK query and DESCRIBE query

ii. GQL (Google Query Language)

It is an SQL like Query Language for retrieving entities or

keys from the App Engine scalable data store. Its syntax is

similar to SQL.

iii. SONES Graph Query Language

The sones GraphQL is a user-friendly domain-specific

language and can be thought of as an "SQL for graphs." [16]

Sones is an object-orientated graph data storage for a large

amount of highly connected semi-structured data in a

distributed environment.

iv. GREMLIN (graph traversal language)

Gremlin is a domain-specific language hosted

in Groovy language which itself is a superset of Java.

Gremlin is a graph language.

While RDBMS uses JDBC and SQL, graph databases use

Blueprints and Gremlin. Gremlin is a style of graph traversal

that can be natively used in various JVM languages. Gremlin

works over those graph databases that implement the

Blueprints property graph data model. Examples include

TinkerGraph, Neo4j, OrientDB, DEX, Rexster, and Sail RDF

Stores.

V. MODELS FOR STRUCTURING DATABASES

NoSQL emerged as companies, such as Amazon, Google,

LinkedIn and Twitter struggled to deal with unprecedented

data levels and operation volumes under tight latency

constraints. Analyzing high-volume, real time data, such as

web-site click streams, provides significant business

advantage by harnessing unstructured and semi-structured

data sources to create more business value. Traditional

relational databases were not up to the task, so enterprises

built upon a decade of research on distributed hash tables

(DHTs) and either conventional relational database systems

or embedded key/value stores, such as Oracle’s Berkeley DB,
to develop highly available, distributed key-value stores.

A. ACID

The idea of ACID was first coined in the 1970s by Jim Gray

[1]. It is a concept that all databases sought to achieve as a

way to assure reliability in database systems. A transaction is

a transformation of state which has the properties of atomicity

(all or nothing), durability (effects survive failures) and

consistency (a correct transformation) [5]. The transaction

concept emerges with the following properties: Atomicity,

Consistency, Isolation and Durability.

www.manaraa.com

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-1, Issue-7, September 2013

16

ACID transactions provide 4 properties which must be

guaranteed:

i. Atomicity: A database transaction is treated as a single

unit such that all of the operations in the transaction

will complete, or none will. This property is referred

to as "all or nothing" approach to execution. If one

element of the transaction fails, the entire transaction

is rolled back.

ii. Consistency: This property ensures that there is no

violation of integrity thus any transaction will

transform the database state from one valid state to

another. The transaction must adhere to rules

predefined in the system at every instance. If at one

instance, a transaction that violates the rules is

executed, the transaction is rolled back and the

database is returned to the previous valid state. This

property entails that there can never be any

partially-completed transactions.The database will

be in a consistent state when the transaction begins

and ends. This property ensures that any transaction

will bring the database from one valid state to

another. In high availability environment this rule

must be satisfied for all nodes in a cluster.

iii. Isolation: Every transaction’s execution is independent
of another and thus will behave as if it is the only

operation being performed upon the database. Each

transaction has to execute in a “black box” and thus
should be transparent to any other concurrent

transaction. No transaction should ever see the

intermediate product of another transaction until it is

completed.

 .

iv. Durability: After a transaction is committed, the effects

thereof are permanent. Any subsequent disturbances

or system failure will not result in a change in the

current database state.

At every given database operation, all the data undergoes

checks to make sure they adhere to constraints imposed by

ACID properties. This has worked well for over three decades

in normalized, small data environments with less concurrent

users in the relational database age. However with new trends

in technology and burgeoning internet usage, characterized by

Big Data, large number of users and unstructured data in

distributed environments which has called for NoSQL

databases to cater for the sudden increase in data, invoke a

move from ACID properties to CAP.

B. CAP

In the year 2000 Dr Eric Brewer at the ACM Symposium on

the Principles of Distributed Computing proposed the CAP

theorem. The CAP theorem stated that three essential

components namely Consistency, Availability and

Partition-Tolerance were crucial for the successful design,

implementation and deployment of applications in distributed

computing.

i. Consistency: Just as in ACID, Consistency is the

property that ensures that all users get the same view

of the database at any instance. This enforces

adherence to the rules defined in the database.

ii. Availability: Is the property of a database which

guarantees that database users always get access to

the same version of the database at any point in time.

iii. Partition Tolerance: This property means database can

be split over a number of servers such that failure of

a single part of the system does not cripple the whole

system. The system should be able to operate

regardless of undesirable circumstances.

CAP in itself offers a bit of relaxation from the strictness of

ACID which may be a bottleneck in some situations (Big

Data).

C. PROBLEMS WITH CAP

CAP which is widely adopted as a principle behind the

building of distributed systems offers three desirable

properties: consistency, availability, and partition tolerance

where only two can be chosen and used thereof in these

systems. Several flaws were noted:

i. Since one can only choose amongst the three properties,

these combinations results in three types of

distributed systems: CA (consistent and available,

but not tolerant of partitions), CP (consistent and

tolerant of network partions, but not available) and

AP (available and tolerant of network partitions, but

not consistent). CP gives an impression that the

system is never available making it a useless system

of which it is not the actual case. In using CP,

availability is only sacrificed when there is a network

partition, meaning that the roles of A and C in CAP

becomes asymmetric in practice. It can be seen in

this case that the issue of A and C being asymmetric

causes a problem.

ii. It very difficult to give the practical differences between

CA systems and CP systems. CP systems give up

availability only when there is a network

partition.CA systems are not tolerant of network

partitions meaning they lose availability when there

is network partition, making CA and CP identical.

This reduces the number of systems to two CP/CA

and AP

iii. The lack of latency consideration in CAP is also a cause

for concern as to whether the properties trade off can

result in the desired distributed system.

If we consider that CAP derived the important properties of

Availability and Consistency from ACID then it means losing

either one of these would not be desirable. BASE however

www.manaraa.com

Database Management Systems: A NoSQL Analysis

17

takes a more encompassing stance by incorporating both to

some extend at any given time. It takes into cognisance the

fact that if a network partition occurs there may be partial

failures but not complete system failure thus data will still be

available amid little delays. BASE stands out as a more robust

technique in a NoSQL database than CAP. Dwelling on CAP

as a tool for the design of modern scalable databases system

might pose a number of problems.

D. BASE

The fundamentals that have guided data management during

the past 40 years were based on the transaction model that

embraced the ACID principle now viewed as inflexible and

too stringent in the light of unstructured data, frequent updates

and access to huge amounts of information stored across

several data stores. ACID model works well with relational

databases. However, does not fare well in very large

distributed systems in which availability and performance are

of paramount importance. A more flexible model known as

BASE was introduced in line with the move towards NoSQL

databases as a way to counter the challenges posed by the

ACID model. The ACID model falls short in situations

characterised by Big Data of unstructured nature and Big

Users. In this regard BASE becomes a more effective model

where ACID may be a hindrance to database operation. The

acronym BASE represents:

i. Basically Available: this property ensures that the

database is essentially accessible even when a part of

the system fails. This is realised by means of a

technique known as sharding or partitioning of data

across several servers. Data may be replicated across

the servers. This results in high availability of the

data regardless of possible failures.

ii. Soft state: This is the property which enables

transactions to proceed even though updates may

take time to propagate to all data stores owing to

system disturbances or failure. Inconsistencies are

tolerated to a certain extend but the end result will be

eventual consistency. Consistency control is

relegated to the application layer as opposed to the

database layer as in ACID. A refresh will result in

update of data otherwise the data becomes stale.

iii. Eventually consistent: BASE relaxes the requirement of

strict consistency at the end of every operation and

only guarantees that the data stores will come to a

consistent state at a later stage.

 Flat File Database RDBMS NoSQL

Data Model Flat File Tables Columns, Graph, Document,

Key/Value

Schema Schema-less Fixed Schema Schema-less

Query Languages CQL SQL API calls, JavaScript and REST

Integrity Model None ACID CAP, BASE

Applicability Any Relational and transactional

data

Non-relational data

Security No security Limited security mechanisms,

vulnerable to SQL injection

Authorisation and authentication

weaknesses, no encryption, Multiple

interfaces increase attack surface.

Advantages Simpler to use, Less

expensive, suited

for small scale use

Ensures data integrity between

transactions, better security,

supports medium to larger

sized organisations, provides

backup and recovery controls

Can cater for Big Data, unstructured

data and distributed systems

Disadvantages No support for

multi-user access,

redundancy and

integrity problems

Expensive and difficult to

manage in distributed systems,

Complex and difficult to learn,

not suitable for unstructured

data

Security is a concern (no encryption),

lack of standard query language, Too

many varied databases thus no single

solution for different purposes

Examples MsDOS Oracle, Postgres, MySQL,

Microsoft SQL Server

MongoDB, Cassandra, Neo4J

Figure 6: Summary of flat file database, RDBMS and NoSQL

www.manaraa.com

Database Management Systems: A NoSQL Analysis

 18 www.erpublication.org

VI. CONCLUSIONS

The underlying features of the main database management

systems namely the Flat File Database, RDBMS and NoSQL

were reviewed. The main problems found on the Flat file and

RDBMS that were common to both database systems include

security vulnerabilities, scalability limitations, and

availability of data regardless of network partition, timely

propagation of changes to ensure consistency, performance

bottlenecks and existence of a single point of failure. Owing

to the rigid schema of the RDBMS, not all data structures can

be represented and stored. These challenges manifest as a

result of the architectural constraints inherent in the

databases. It was observed that these DBMS have some

aspects that are still desirable for instance to achieve

reliability and integrity. Completely doing away with the

traditional databases in favour of total adoption of the NoSQL

also poses great challenges in our data management quest.

NoSQL has challenges of not adequately catering for

relational and transactional data. While giving cognisance to

mission critical data, transactional data and a varied more

cases where we seek to ensure reliability as a key aspect,

NoSQL may not be ideal, calling for a revisit to the good old

mature, tried and tested RDBMS. Owing to this scenario,

both RDBMS and NoSQL are suited for different purposes

and therefore cannot be absolute substitutes for each other.

Having gone into an analysis of CAP, widely talked about as a

tool behind the design of modern scalable database system,

we find it falling short in providing suitable engineering

tradeoffs in building scalable databases. The lack of latency

consideration in CAP significantly reduces its overrating as a

preferred choice behind the building of NoSQL databases.

This leaves one with important questions for CAP

implementation such as: How then does the system make a

trade-off between availability and consistency in the event of

a partition (P)?

The only feasible solution in the future for a single universal

solution to cater for both relational and non-relational data

would be an extension on the RDBMS to allow it to cater for

non-relational data. Our future works will be exploration of a

solution which can assimilate the desirable features of the

RDBMS and those of the NoSQL solutions in one database

model.

REFERENCES

[1] Alexandru Boicea, Florin Radulescu, Laura Ioana Agapin, “MongoDB vs
Oracle - database comparison”, IEEE 2012

[2] Kris Zyp http://www.sitepen.com/blog/2010/05/11/ nosql-architecture/,

May 2010

[3] http://www.rackspace.com/blog/nosql-ecosystem/

[4] Ruxandra Burtica, Eleonora Maria Mocanu, Mugurel Ionuţ Andreica,
Nicolae Ţăpuş, “Practical application and evaluation of no-SQL

databases in Cloud Computing”, IEEE 2012
[5] Jim Gray, “The Transaction Concept: Virtues and Limitations”,

Proceedings of Seventh International Conference on Very Large

Databases, June 1981

[6] Vibneiro,http://ivoroshilin.com/2012/12/13/brewers-cap-theorem-explai

ned-base-versus-acid/,December 2012

[7] Anders Karlsson, http://karlssonondatabases.blogspot.com/ August 2013

[8] http://datastax.com/docs/1.0/ddl/column_family

[9] http://www.infoq.com/news/2011/08/UnQL

[10] http://www.wikipedia.org/wiki/SPARQL

[11] W3C,http://www.w3.org/TR/rdf-sparql-query,March 2013

[12] Vibneiro,http://ivoroshilin.com/2012/12/13/brewers-cap-theorem

explained-base-versus-acid/,December 2012

[13] Dmitriy kalyada,http://blog.altoros.com/four-things-to-consider-

when-choosing-a-db-for-your-interactive- application.html,June

11,2013

[14] Charles Roe,

http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-t

ransaction-processing/ March 2013

[15] Mike Chapple, http://databases.about.com/od/ other

databases/a/Abandoning-Acid-In-Favor-Of-Base.htm, August 2013

[16] Sones GmbH http://en.wikipedia.org/wiki/Sones_GraphDB May 2011

Innocent Mapanga. Innocent Mapanga is

currently pursuing Mtech in Computer

Engineering at Delhi Technological University in

India. The author has completed Bsc (Honors) in

Computer Science from Bindura University,

Zimbabwe. He is presently working on many

papers. His other areas of research include Mobile

and Adhoc Networks, Security, Algorithms,

Artificial Intelligence, Genetic Algorithms,

Databases and Distributed Computing.

Prudence Kadebu. Prudence Kadebu is

currently pursuing Mtech in Software

Engineering at Delhi Technological University

in India. The author has completed Bsc (Honors)

in Computer Science from Midlands State

University, Zimbabwe. She is presently working

on many papers. Her other research areas

include Security, Requirements Engineering,

Software Quality Management, Virtual Reality,

Artificial Intelligence, Distributed Computing,

Databases and Data Mining.

file:///C:\DeLL%20LapTop\Documents\Kris%20Zyp
http://www.sitepen.com/blog/2010/05/11/nosql-architecture/
http://www.rackspace.com/blog/nosql-ecosystem/
http://ivoroshilin.com/2012/12/13/brewers-cap-theorem-explained-base-versus-acid/,December
http://ivoroshilin.com/2012/12/13/brewers-cap-theorem-explained-base-versus-acid/,December
http://karlssonondatabases.blogspot.com/
http://datastax.com/docs/1.0/ddl/column_family
http://www.infoq.com/news/2011/08/UnQL
http://www.wikipedia.org/wiki/SPARQL
http://www.w3.org/TR/rdf-sparql-query,March
http://ivoroshilin.com/2012/12/13/brewers-cap-theorem%20%20%20%20explained-base-versus-acid/,December
http://ivoroshilin.com/2012/12/13/brewers-cap-theorem%20%20%20%20explained-base-versus-acid/,December
http://blog.altoros.com/four-things-to-consider-%20%20%20when-choosing-a-db-for-your-interactive-%20%20application.html
http://blog.altoros.com/four-things-to-consider-%20%20%20when-choosing-a-db-for-your-interactive-%20%20application.html
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
http://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
http://databases.about.com/od/%20otherdatabases/a/Abandoning-Acid-In-Favor-Of-Base.htm
http://databases.about.com/od/%20otherdatabases/a/Abandoning-Acid-In-Favor-Of-Base.htm
http://databases.about.com/od/%20otherdatabases/a/Abandoning-Acid-In-Favor-Of-Base.htm
http://en.wikipedia.org/wiki/Sones_GraphDB%20May%202011

